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a b s t r a c t

Environments experienced by organisms during early development shape the character and timing of
developmental processes, leading to different probabilities of survival in the developmental habitat,
and often profound effects on phenotypic expression later in life. Amphibian larvae have immense capac-
ity for plasticity in behavior, morphology, growth and development rate. This creates the potential for
extreme variation in the timing of, and size at metamorphosis, and subsequent phenotype in the juvenile
and adult stage. Hormones of the neuroendocrine stress axis play pivotal roles in mediating environmen-
tal effects on animal development. Corticotropin-releasing factor, whose secretion by hypothalamic neu-
rons is induced by environmental stress, influences the timing of amphibian metamorphosis by
controlling the activity of the thyroid and interrenal (adrenal; corticosteroids) glands. At target tissues,
corticosteroids synergize with thyroid hormone to promote metamorphosis. Thus, environmental stress
acts centrally to increase the activity of the two principle endocrine axes controlling metamorphosis, and
the effectors of these axes synergize at the level of target tissues to promote morphogenesis. While stress
hormones can promote survival in a deteriorating larval habitat, costs may be incurred such as reduced
tadpole growth and size at metamorphosis. Furthermore, exposure to elevated corticosteroids early in life
can cause permanent changes in the expression of genes of the neuroendocrine stress axis, leading to
altered physiology and behavior in the juvenile/adult stage. Persistent effects of stress hormone actions
early in life may have important fitness consequences.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Although the genotype provides the template for organismal
form and function, the environment experienced by a developing
organism often has profound effects on phenotypic expression, a
phenomenon generally known as phenotypic plasticity (Pigliucci,
2001; DeWitt and Scheiner, 2004). Phenotypic plasticity is the pro-
cess by which organisms modify their behavior, morphology, or
physiology in response to changing environments, and has been
described in almost every group of plant and animal (Via et al.,
1995). The term ‘developmental plasticity’ is often used in place
of phenotypic plasticity to recognize that plasticity is often (but
not exclusively) a developmental phenomenon (West-Eberhard,
2003). Other terms used are ‘prenatal programming’ or ‘fetal pro-
gramming’, which refer to the effects of early life experience on la-
ter life phenotypic expression. Studies of plasticity have expanded
in recent years to encompass most biological disciplines including
human biology, where the impact of the environment experienced
by the developing embryo, fetus and neonate on later life health
ll rights reserved.
and disease has come to the forefront of biomedical research (the
developmental origins of disease hypothesis; Ozanne and Costan-
cia, 2007). The science of ecological developmental biology has
developed recently as a distinct discipline, which, in the words of
Gilbert and Epel (2008), is the study of how ‘‘Development weaves
genotype and environment into phenotype”.

Organisms respond to their environment by altering develop-
ment, either by changing the timing of developmental events or
by modifying their morphology, physiology or behavior. Plastic re-
sponses to the environment expressed during early development
can have particularly important fitness consequences (Gilbert,
2003; Nijhout, 2003; Frankino and Raff, 2004; Gilbert and Epel,
2008). Phenotypic plasticity can be adaptive if it increases survival
during the embryonic/larval life stage (e.g., accelerated tadpole
metamorphosis in response to pond drying; Newman, 1992; Den-
ver et al., 1998) or generates a juvenile/adult phenotype that may
be better adapted to the prevailing environmental conditions
(West-Eberhard, 2003; Gilbert and Epel, 2008). However, there
are trade-offs associated with such plasticity, which can affect
traits expressed later in life, resulting in either positive or negative
fitness consequences. Thus, phenotypic plasticity can be neutral,
adaptive or maladaptive depending on the trait or traits affected,
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and the nature of the environment in which the traits are
expressed.

Virtually all organisms exhibit some form of phenotypic plastic-
ity. However, the proximate mechanisms that underlie variable
phenotypic responses to the environment are poorly understood.
Hormones mediate many environmental effects on organismal
development (Gilbert and Epel, 2008). They influence the timing
and level of gene expression, and therefore can alter the timing
of development, modify the character of morphological develop-
ment, or ‘program’ the behavioral and physiological phenotype ex-
pressed in a subsequent life history stage. Hormones of the
neuroendocrine stress axis (the hypothalamo–pituitary–adrenal,
or HPA axis) are principal mediators of physiological and behav-
ioral responses to environmental change (Denver, 2009). The term
‘stress hormone’ is used here to refer to hormones that are pro-
duced and act within the HPA axis, and include neurohormones
such as corticotropin-releasing factor (CRF) and related peptides,
pituitary adrenocorticotropic hormone (ACTH; also known as cor-
ticotropin) and glucocorticoids (GCs) produced by adrenal cortical
cells (e.g., cortisol and corticosterone). Hormone action often leads
to epigenetic changes at gene regulatory regions, involving modifi-
cations to chromatin structure (e.g., histone methylation, acetyla-
tion, phosphorylation, ubiquitination) and possibly DNA
methylation (Gilbert and Epel, 2008). Epigenetic changes in chro-
matin or DNA lead to alterated gene expression, which drives phe-
notypic expression; such changes may be passed on to subsequent
generations (i.e., transgenerational effects; Anway et al., 2005;
Crews, 2008; Gore, 2008; Morgan and Whitelaw, 2008).

Because of their complex life cycles, amphibians are ideal for
investigating environmental effects on early development, and
their impact on future phenotypic expression and fitness. Studies
by amphibian ecologists have shown that environmental condi-
tions experienced during the larval stage, such as conspecific den-
sity, food availability, habitat desiccation, and exposure to
predators, have significant effects on metamorphic timing, body
size and morphology of the tadpole and the adult (Wilbur and Col-
lins, 1973; Werner, 1986; Newman, 1992; Goater, 1994; Denver
et al., 1998; Relyea, 2007). Growth is reduced when tadpoles face
deteriorating environmental conditions, but developmental re-
sponses (i.e., acceleration of metamorphosis or polyphenism) de-
pend on the stage and body size of the tadpole. In
premetamorphosis, before hindlimb and thyroid gland develop-
ment (Etkin, 1968), tadpoles slow development in response to ad-
verse environmental conditions (Glennemeier and Denver, 2002b).
After a minimum body size is reached and the thyroid gland devel-
ops, during prometamorphosis, tadpoles respond to adverse condi-
tions by accelerating metamorphosis (Wilbur and Collins, 1973;
Newman, 1992; Denver et al., 1998, 2002).

Developmental plasticity is adaptive for amphibian species that
live in arid environments since it increases the probability of sur-
vival (Newman, 1992; Denver et al., 1998). However, in such cir-
cumstances metamorphosis occurs at a smaller body size, which
may be associated with future fitness costs. Tadpoles reared in sub-
optimal environments metamorphose at a smaller body size, and
the juveniles are thus more likely to exhibit slower growth rates,
inferior locomotor abilities, greater susceptibility to starvation
and higher mortality when reared under conditions where re-
sources are limited (Semlitsch et al., 1988; Berven, 1990; Goater,
1994; Scott, 1994; Beck and Congdon, 1999, 2000; Van Buskirk
and Saxer, 2001; Alvarez and Nicieza, 2002; Altwegg and Reyer,
2003; Relyea and Hoverman, 2003). In most species, this body size
disadvantage at metamorphosis is retained through the age at first
reproduction, thus compromising reproductive fitness (Semlitsch
et al., 1988; Berven, 1990; Goater, 1994; Scott, 1994; Altwegg
and Reyer, 2003). However, this is in contrast to the growth poten-
tial that newly metamorphosed frogs have when provided with
abundant resources (i.e., they exhibit catch-up growth; Hu et al.,
2008).

The effects of environmental stress on tadpole growth and
development in many ways parallel those of intrauterine stress
on fetal growth and development in mammals. Maternal malnutri-
tion or repeated acute stress (e.g., shock, restraint) cause intrauter-
ine growth retardation and pre-term birth (Weinstock et al., 1992,
1998; Challis et al., 2001; Bloomfield et al., 2003), and both of these
factors have been associated with reproductive dysfunction and in-
creased susceptibility to disease later in life (Barker, 1997; Wein-
stock, 2001). These later-life effects of the in utero environment
are associated with activation of the neuroendocrine stress axis
in both mothers and fetuses (Weinstock, 2001; Welberg and Seckl,
2001; Matthews, 2002). This activation, which causes an elevation
in plasma GCs during critical windows of brain development, has
been shown to permanently alter the functioning of the stress axis
and the expression of behaviors throughout the life of the animal.
2. Hormones of the neuroendocrine stress axis

Hormones of the neuroendocrine stress axis (HPA axis) play key
roles in phenotypic plasticity, and may mediate the long term ef-
fects of early life experience on later life phenotypic expression.
Below I first describe the major components of the HPA axis
(Fig. 1; for a more detailed description see Boorse and Denver,
2006; Yao and Denver, 2007; Denver, 2009). I then discuss the roles
of stress hormones in mediating environmental effects on amphib-
ian development, and in ‘programming’ the phenotype of the juve-
nile/adult.
2.1. Corticotropin-releasing factor and related peptides

Corticotropin-releasing factor and related peptides play central
roles in developmental plasticity in vertebrates. The presence of
CRF activity in the hypothalamus was originally described by Har-
ris in the 1940s and was the first neurohormonal activity to be dis-
covered (reviewed by Harris, 1955). Working in the late 1970s and
early 1980s, three groups isolated peptides from different species
that had CRF activity. Vale and colleagues (1981) reported the iso-
lation of a 41 amino acid peptide from ovine hypothalamus that
stimulated the release of ACTH and b-endorphin by the rat anterior
pituitary gland in vitro and in vivo. In the same year, Montecucchi
and Henschen (Montecucchi and Henschen, 1981; earlier working
with Vittorio Erspamer; Montecucchi et al., 1979) reported the iso-
lation of a peptide from the skin of the monkey frog, Phyllomedusa
sauvageii, that they named sauvagine (Montecucchi and Henschen,
1981). Sauvagine had earlier been found to cause the release of
ACTH and b-endorphin in vivo and in vitro (reported in abstract
form: Montecucchi et al., 1979). One year later, Lederis and col-
leagues (1982) reported the isolation of a peptide from the caudal
neurosecretory organ (urophysis) of the white suckerfish (Catosto-
mus commersoni) that had potent hypotensive activity in mammals
and birds, and ACTH releasing activity in fish and mammals. In the
1981 paper by Vale and colleagues (1981), referencing the paper by
Montecucchi and Henschen (1981), the authors discuss the se-
quence similarity of ovine CRF and sauvagine, and, citing a per-
sonal communication with Karl Lederis, they pointed out that
‘‘Another nonmammalian hypotensive peptide, urotensin I, iso-
lated from teleost urohypophysis is closely related structurally to
sauvagine and thus to CRF.” Prior to the publication of the ovine
CRF peptide sequence, Vittorio Erspamer predicted that ‘‘the
long-searched hypothalamic CRF is sauvagine-like” (Erspamer
et al., 1981; see Lederis, 1987). Thus began three decades of inten-
sive work on the structure, function and evolution of CRF and re-
lated peptides.



Fig. 1. Central and peripheral integration of the stress and thyroid endocrine axes in the control of amphibian metamorphosis. Shown is a schematic representation of the
organization of the hypothalamo–pituitary–adrenal (HPA; stress) and hypothalamo–pituitary–thyroid (HPT) axes in amphibian tadpoles, their regulation by input from the
external environment, transduction of this input by neural and neuroendocrine pathways, and synergistic interactions among thyroid hormones and corticosteroids in target
cells leading to the promotion of morphogenesis. The two endocrine axes are controlled centrally by corticotropin-releasing factor (CRF; and possibly CRF-related peptides)
which acts on the anterior pituitary gland (AP) to stimulate the release of thyrotropin (TSH) and corticotropin (ACTH). TSH acts on the thyroid gland to stimulate release of
thyroxine (T4) and to a lesser extent 3,5,30-triiodothyronine (T3). Thyroid hormones are transported in the blood by serum binding proteins (transthyretin, thyroxine binding
globulin and albumin). ACTH acts on adrenal cortical cells (interrenal glands) to stimulate biosynthesis and release of glucocorticoids which are transported in the blood
bound to corticosteroid binding globulin. Cellular uptake of T3 and T4 is achieved by amino acid and organic ion transporters; there is also evidence that thyroid hormones
may enter cells bound to transthyretin via a receptor-mediated process. Glucocorticoids are thought to enter cells primarily by passive diffusion across the plasma membrane.
Upon entering the cell thyroid hormone is bound to cytosolic binding proteins, some of which (the monodeiodinases) serve to convert the hormone to either active (T3;
deiodinases types 1 and 2) or inactive forms (reverse T3 [rT3], diiodothyronine [T2]; deiodinase type 3). Thyroid hormone receptors (TR) form heterodimers with retinoid X
receptors (RXR) and are bound to DNA in the unliganded form where they actively repress gene transcription. Upon thyroid hormone binding to TR gene transcription is
derepressed and activated. Upon entering the cell glucocorticoids bind to corticosteroid receptors (glucocorticoid receptor [GR or mineralocorticoid receptor [MR]) that are
located in the cytosol bound to heat shock proteins and immunphilins (the ‘foldosome’). Hormone binding causes a conformational change in the receptor, the release of
proteins that comprise the foldosome, and dimerization and translocation of receptors to the nucleus where they bind DNA to activate or repress target genes. When cells are
exposed to low concentrations of thyroid hormone plus glucocorticoids genes such as the TRs, deiodinase type 2, and the immediate early thyroid hormone inducible
transcription factor Klf9 are activated in a synergistic manner. This leads to enhanced sensitivity of cells to the actions of thyroid hormone, which serves to accelerate
morphogenesis.
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At the time of their isolation, sauvagine and urotensin I were
thought to represent orthologs of mammalian CRF, but subsequent
analysis showed that fishes and frogs have orthologous CRF genes
that are distinct from urotensin I and sauvagine (Okawara et al.,
1988; Stenzel-Poore et al., 1992). Subsequently, Vaughan and col-
leagues (1995), using antibodies to fish urotensin I, found uroten-
sin I-like immunoreactivity in rat brain. They then used a urotensin
I cDNA probe to screen a rat brain cDNA library and isolated a
mammalian gene that codes for a 122 amino acid precursor that
is processed to a 40 amino acid mature peptide with 63% sequence
similarity to suckerfish urotensin I, and 45% sequence similarity to
rat CRF (Vaughan et al., 1995). They named this peptide urocortin
to recognize its similarity to CRF and fish urotensin I (now urocor-
tin 1; Vaughan et al., 1995; Donaldson et al., 1996). We recently
isolated a gene orthologous to mammalian urocortin 1 from the
frog Xenopus laevis (Boorse et al., 2005).

Following the discovery of mammalian urocortin, two other
CRF/urocortin paralogs were isolated by genomic analysis and
molecular cloning from mouse and human and named urocortin
2 and urocortin 3 (Hsu and Hsueh, 2001; Reyes et al., 2001; Lewis
et al., 2001; Hauger et al., 2003). Orthologous genes for mamma-
lian urocortins 2 and 3 were subsequently identified in pufferfish
(Hsu and Hsueh, 2001; Lewis et al., 2001; Boorse et al., 2005), uro-
cortin 2 in the chicken and urocortin 3 in the frog X. laevis (Boorse
et al., 2005). Current evidence supports the existence of at least
four paralogous CRF/urocortin genes in vertebrates (Denver,
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2009). Sauvagine remains somewhat of an enigma, since it shares
only 50% sequence similarity with X. laevis urocortin 1 (Boorse
et al., 2005). A full length sauvagine cDNA sequence isolated from
the skin of P. sauvageii has been deposited in Genbank (Accession #
AY943910). Analysis of this sequence suggests that sauvagine may
be a highly divergent urocortin 1 that could be specific to the Phyl-
lomedusidae, but more study is needed.

The actions of CRF-like peptides are mediated by at least two G
protein-coupled receptors and a secreted binding protein (CRF-BP).
The major function of the CRF-BP appears to be to modulate access
of CRF and related peptides to CRF receptors (Seasholtz et al.,
2001). The first CRF receptor was isolated from human by Vale’s
group using an expression cloning strategy (Chen et al., 1993). Sub-
sequently, two CRF receptor genes were identified and named CRF1

and CRF2 (Dautzenberg and Hauger, 2002). Orthologs of the mam-
malian CRF1 and CRF2 receptors have been isolated by molecular
cloning from other vertebrates including frogs (Dautzenberg
et al., 1997; Ito et al., 2006). Both receptors have distinct tissue dis-
tributions in mammals and frogs, and they mediate the actions of
CRF peptides in the central nervous system and in peripheral tis-
sues (reviewed by Boorse and Denver, 2006). Within the hypothal-
amo–pituitary system, CRF binds to and activates CRF1 receptors
expressed on pituitary corticotropes to induce secretion of ACTH
(reviewed by Yao and Denver, 2007). ACTH stimulates corticoste-
roid biosynthesis by the adrenal cortex (mammals) or interrenal
glands (amphibians). Corticotropin-releasing factor and urocortin
1 bind to and activate both CRF1 and CRF2, but CRF has higher affin-
ity for CRF1, and urocortin 1 (and sauvagine) has higher affinity for
CRF2 (Dautzenberg et al., 1997; Dautzenberg and Hauger, 2002;
Boorse et al., 2005). Urocortins 2 and 3 are selective for CRF2

(Hsu and Hsueh, 2001; Reyes et al., 2001; Lewis et al., 2001; Hau-
ger et al., 2003). These findings have led to the hypothesis that the
CRF2 functions primarily as a receptor for urocortins (Dautzenberg
and Hauger, 2002).

In addition to their critical roles as hypophysiotropins, CRF-like
peptides are widely expressed in the central nervous system (CNS)
of vertebrates where they function as neurotransmitters or neuro-
modulators to coordinate behavioral and autonomic responses to
stress (Lovejoy and Balment, 1999; Boorse and Denver, 2006). Cor-
ticotropin-releasing factor and related peptides play central roles
in the regulation of food intake (Crespi and Denver, 2005; Mastora-
kos and Zapanti, 2004), behavioral responses to stress (Sapolsky
et al., 2000; Bale et al., 2002; Bale and Vale, 2004; Flik et al.,
2006), and learning and memory consolidation (Gulpinar and Ye-
gen, 2004; Fenoglio et al., 2006; Roozendaal et al., 2008; Todorovic
et al., 2007).

Peptides of the CRF family, their receptors and binding protein
are expressed in many peripheral tissues where they may influence
diverse physiological functions (reviewed by Boorse and Denver,
2006). Corticotropin-releasing factor and urocortins have some
overlapping, but many distinct roles in physiology and behavior
(Fekete and Zorrilla, 2007), and these differences may in part re-
flect the differential expression and functions of the CRF1 and
CRF2 (Dautzenberg and Hauger, 2002; Bale et al., 2002; Bale and
Vale, 2004; Boorse and Denver, 2006; Rissman et al., 2007).

Corticotropin-releasing factor-like peptides function as cyto-
protective factors, protecting neuronal and cardiac cells from apop-
tosis (Fox et al., 1993; Brar et al., 1999, 2000, 2002; Pedersen et al.,
2001; Radulovic et al., 2003; Linden et al., 2005; Martin et al.,
2005; Tao et al., 2006) and inducing proliferation in cultured mam-
malian cells (Jessop et al., 1997; Mitsuma et al., 2001; Ikeda et al.,
2002). We recently discovered a novel, cytoprotective role for CRF
in the X. laevis tadpole tail (Boorse et al., 2005). Corticotropin-
releasing factor, expressed by tail muscle cells, functions as an
autocrine cytoprotective factor for tail muscle cell survival. Treat-
ment of tadpole tail explants with CRF slowed tail regression
in vitro, and reduced caspase 3/7 activity. The expression of CRF-
BP mRNA in tadpole tail increased during spontaneous metamor-
phosis and was induced precociously by treatment with thyroid
hormone (Brown et al., 1996; Valverde et al., 2001; Boorse et al.,
2006). Increased CRF-BP at metamorphic climax reduces the bio-
availability of CRF to its receptors on tail muscle cells, thus promot-
ing tail regression by neutralizing the cytoprotective actions of CRF
(Boorse et al., 2006).

The adaptive significance of CRF’s cytoprotective role may be to
maintain the viability of the tadpole tail, an essential locomotory
organ required for feeding and escape from predators. Environ-
mental insults such as thermal and osmotic stress, hypoxia, hyper-
capnia, and tissue damage caused by predatory attack could
negatively impact tail cell survival. The expression of CRF and uro-
cortin 1 mRNAs in tail explants cultures was increased, but CRF-BP
mRNA was decreased by different environmental stressors (Boorse
et al., 2006). The upregulation of CRF and urocortin 1, and the
downregulation of CRF-BP by environmental stressors suggest that
the production and bioavailability of these peptides, and thus their
cytoprotective actions, can be modulated by direct environmental
effects on the tail.

2.2. Corticosteroids and their receptors

The corticosteroids, produced by adrenal cortical cells, are the
primary effectors of the HPA axis of vertebrates, and have been
classified into two groups, the glucocorticoids (GCs) and the miner-
alocorticoids, owing to their often distinct physiological functions.
Corticosteroids act primarily through binding to intracellular
receptors that function as ligand-activated transcription factors.
Vertebrates possess two distinct corticosteroid receptors that were
originally identified in mammals based on their differential bind-
ing affinities: the high affinity type I receptor (also called the min-
eralocorticoid receptor; MR) and the lower affinity type II receptor
(also called the glucocorticoid receptor; GR). The GR and MR be-
long to the nuclear hormone receptor superfamily, and phyloge-
netic analysis suggests that these two receptors arose by a gene
duplication event in the gnathostome lineage (Thornton, 2001;
Bridgham et al., 2006). Homologous genes to mammals for both
receptor types have been isolated in the frog X. laevis (Gao et al.,
1994a,b; Csikos et al., 1995), and we recently reported the distribu-
tion in the brain, and the regulation of expression by corticoste-
roids of the GR in X. laevis (Yao et al., 2008a). There is also
evidence for corticosteroid receptors located in the plasma mem-
brane that mediate rapid actions of these hormones (Tasker
et al., 2006).

The corticosteroids have diverse actions in animal development,
physiology and behavior, although the molecular bases for these
actions are poorly understood. They influence development of
the brain, lungs and other organ systems, mobilize stored energy
and stimulate feeding to replenish depleted energy stores follow-
ing a stress response, and have important effects on the brain
where they influence learning and memory consolidation. Cortico-
steroids exert negative feedback at the level of the brain and pitu-
itary gland to inhibit the activity of the HPA axis, thus returning the
system to basal following a stress response (Yao and Denver, 2007;
Yao et al., 2008b).

3. Roles of stress hormones in amphibian development and
phenotypic plasticity

Stress hormones play important and diverse roles in animal
development. In many animals the neuroendocrine stress system
is sufficiently developed to respond to physical stressors by upreg-
ulating corticosteroid secretion during early postembryonic stages
(Feist and Schreck, 2001; Glennemeier and Denver, 2002a; Wada,
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2008). Corticosteroids have widespread effects on growth and
development (Welberg and Seckl, 2001; Denver et al., 2002; Radu-
lovic et al., 2003), altering the timing of life history transitions
(Wada, 2008), and leading to permanent alterations in physiology,
morphology and behavior (Barker, 1992, 1997; Brunson et al.,
2001; Matthews, 2002; Hu et al., 2008; Korosi and Baram, 2008).
Elevations in corticosteroids may be causally linked to the timing
of smoltification in salmonids, metamorphosis of flatfish and
amphibians, hatching in reptiles and birds, and parturition in
mammals (Wada, 2008).

3.1. Stress hormones and larval growth, behavior and morphology

Corticosteroids have complex influence on growth and meta-
morphosis of larval amphibians. The effects of corticosteroids on
metamorphosis (i.e., whether they accelerate or decelerate meta-
morphosis) depend on the animal’s developmental stage and thy-
roid hormone status (discussed below). By contrast, elevations in
corticosteroids in tadpoles, either by administration of exogenous
hormone or through increased endogenous hormone production
reduce tadpole growth at all developmental stages (see Hu et al.,
2008; Denver, 2009). A physiological role for corticosteroids in
growth inhibition in tadpoles is supported by the finding that inhi-
bition of corticosteroid synthesis using the drug metyrapone re-
versed the growth suppressive effects caused by crowding in
Rana pipiens tadpoles (Glennemeier and Denver, 2002b).

Recent findings support a role for corticosteroids in the behav-
ioral and morphological responses of tadpoles to predation. When
confronted with a predator, or a predator chemical cue, tadpoles
display rapid behavioral inhibition, whereby they settle to the bot-
tom of the pond and remain still. This is presumed to facilitate
avoidance of detection by the predator (Fraker, 2008). Some chem-
ical cues may be derived from the predator (i.e., kairomones), but
tadpoles actively secrete an alarm pheromone under predatory at-
tack that is detected by conspecifics (Fraker et al., 2009). Unlike the
neuroendocrine response to predator cues in mammals where the
HPA axis becomes activated (Figueiredo et al., 2003; Apfelbach
et al., 2005; Roseboom et al., 2007), exposure of tadpoles to alarm
pheromone caused a rapid, dose-dependent suppression of whole
body corticosterone content (Fraker et al., 2009). The suppression
of the HPA axis was permissive for expression of behavioral inhibi-
tion, since reversing the decline in corticosterone by the addition of
a low dose of hormone to the aquarium water in which the tad-
poles were reared partially blocked the behavioral response.

While predation causes rapid (minutes to hours) behavioral and
physiological responses in tadpoles, predation risk extending over
days to weeks leads to distinct morphological changes which can
have indirect effects on fitness (Benard, 2004; Relyea, 2007). For
example, nonlethal predator presence (predators housed in cages
and fed conspecifics) over several weeks results in a relatively
smaller body and larger tail (Benard, 2004; Relyea, 2007). The lar-
ger tail may serve as a lure to distract predator strikes from the
more vulnerable body, or may confer enhanced burst locomotion
for escape (Benard, 2004; Johnson et al., 2008). We recently found
that 3 week exposure of wood frog tadpoles, R. sylvatica to the non-
lethal presence of a predator (larvae of the dragonfly Anax junius
fed conspecific tadpoles) elevated whole body corticosterone con-
tent (J. Middlemis-Maher, E.E. Werner and R.J. Denver, unpublished
data; this is in contrast to the acute suppression of the HPA axis
discussed above). Furthermore, elevation of tissue corticosterone
content within the physiological range by addition of the hormone
to the aquarium water, or exposure to tadpole alarm pheromone
caused wood frog tadpoles to develop larger tails relative to their
body size; the effect of the alarm pheromone on tail morphology
could be blocked by treatment with metyrapone (J. Middlemis-Ma-
her, unpublished data). R. pipiens tadpoles treated with corticoste-
rone (62 or 125 nM in the aquarium water for 18 days) had deeper
tails (increased tail muscle depth:tail length; Glennemeier and
Denver, 2002c). Tail explants from X. laevis tadpoles cultured for
7 days in the presence of different doses of corticosterone were lar-
ger (greater dry mass) than controls at the end of the culture per-
iod (E.D. Hoopfer and R.J. Denver, unpublished data). Taken
together, the findings suggest that adaptive changes in tadpole tail
morphology in response to predation, that can have indirect effects
on fitness, are mediated by corticosteroids. While the development
of defensive morphologies can reduce predation risk, such pheno-
typic plasticity can incur costs such as reduced growth rates (Be-
nard, 2004). As discussed above, corticosteroids reduce tadpole
growth, and therefore may mediate the cost/benefit trade-off in
predator-induced morphological changes and slowed growth rate.

3.2. Stress hormones and amphibian metamorphosis

Thyroid hormone controls amphibian metamorphosis and corti-
costeroids synergize with thyroid hormone to accelerate metamor-
phosis (Denver, 2009). Thus, if a tadpole experiences
environmental stress during prometamorphosis it may accelerate
metamorphosis. For example, exposure to habitat desiccation,
crowding or food restriction during mid to late prometamorphosis
shortens the time to metamorphosis in different amphibian species
(Denver et al., 2002). There are two physiological/molecular mech-
anisms, one central nervous, the other via actions in peripheral tis-
sues, that likely account for these effects (Fig. 1).

3.2.1. Central nervous system mechanism
A central mechanism involves the dual role that CRF plays in

amphibian larvae to regulate the HPA and the hypothalamo–pitu-
itary–thyroid axes (Fig. 1). In all vertebrates studied, within the
hypothalamo–pituitary system, a major action of CRF is to stimu-
late ACTH secretion, and thus to serve as the central regulator of
the HPA axis (Yao and Denver, 2007; Denver, 2009). However,
CRF-like peptides are also potent thyrotropin (TSH)-releasing fac-
tors in nonmammalian species, particularly during early develop-
mental stages (Denver, 1999, 2009; De Groef et al., 2006). This
suggested the hypothesis that CRF plays a key role in controlling
life history transitions such as amphibian metamorphosis, which
is dependent on thyroid hormone (see De Groef et al., 2006; Den-
ver, 2009 for reviews). There is now strong evidence to support this
hypothesis. For example, injection of CRF-like peptides into
amphibian tadpoles increased whole body thyroid hormone and
corticosterone content, and accelerated metamorphosis (Gancedo
et al., 1992; Denver, 1993, 1997; Okada et al., 2007). Blockade of
endogenous CRF availability or action through passive immuniza-
tion, or administration of the general CRF receptor antagonist alpha
helical CRF(9–41) slowed spontaneous metamorphosis (Denver,
1993) or blocked accelerated metamorphosis caused by water vol-
ume reduction to mimic pond drying (Denver, 1997).

Stimulation of TSH release by CRF-like peptides is mediated by
the CRF2 expressed on pituitary thyrotrope cells (shown in chick
and frog; De Groef et al., 2003, 2006; Okada et al., 2007; Okada
et al., 2009). The CRF2 selective ligands, urocortins 2 and 3 acceler-
ated tadpole metamorphosis when injected into tadpoles, and they
stimulated TSH release by frog pituitary cells in vitro (Okada et al.,
2007). The actions of CRF on TSH release in vitro could be blocked
by the CRF2 receptor antagonist anti-sauvagine 30, but not by the
CRF1 receptor antagonist antalarmin (Okada et al., 2007). Sauva-
gine, which binds to the frog CRF2 with 40 times greater affinity
than to the frog CRF1 (Boorse et al., 2005), is a potent stimulator
of tadpole metamorphosis (Denver, 1997) and in vitro TSH release
(Okada et al., 2007), but does not stimulate ACTH release by frog
pituitaries in vitro (while CRF stimulated ACTH release in the same
experiment; Tonon et al., 1986). Lastly, using histochemistry, CRF2
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has been shown to be expressed on thyrotropes but not cortico-
tropes in chick (De Groef et al., 2003) and frog (Okada et al.,
2009) pituitaries. Taken together, the findings support that stimu-
lation of TSH release from the amphibian pituitary gland by CRF-
like peptides is mediated by CRF2 expressed on thyrotropes;
whereas, stimulation of ACTH release is mediated by CRF1 ex-
pressed on corticotropes.

In the pituitary gland of X. laevis tadpoles, CRF1 mRNA is ex-
pressed during premetamorphosis and increases throughout meta-
morphosis, while CRF2 mRNA expression can be detected by RT-
PCR at the start of prometamorphosis and shows a distinct increase
in expression in late prometamorphosis leading up to metamor-
phic climax (Manzon and Denver, 2004). This expression pattern
suggests that the CRF1 expressed on corticotropes provides for
responsiveness of the tadpole HPA axis to environmental stress
from early in development; premetamorphic tadpoles are capable
of mounting robust HPA responses following exposure to a physi-
cal stressor (Glennemeier and Denver, 2002a). Whereas, upregula-
tion of CRF2 during prometamorphosis establishes competence of
the pituitary thyrotropes to respond to hypothalamic signals, thus
driving the prometamorphic rise in plasma TSH, and allowing for
modulation of TSH secretion (and thus the timing of metamorpho-
sis) in response to a changing environment (mediated by CRF neu-
rons located in the anterior preoptic area; Yao et al., 2004).

3.2.2. Peripheral mechanisms
Although exogenous corticosteroids administered alone during

premetamorphosis inhibit tadpole growth and development, they
can accelerate thyroid hormone-induced metamorphosis (Denver,
2009). In some species, such as Bufo boreas (Hayes et al., 1993) or
the Mexican axolotl (Darras et al., 2002), exposure to exogenous
corticosterone alone (without exogenous thyroid hormone) re-
sulted in accelerated metamorphosis, which may have been due
to synergy of the corticosterone with rising endogenous levels of
thyroid hormone.

The molecular mechanisms for the synergistic actions of corti-
costeroids and thyroid hormone on tissue transformation likely in-
volve the enhancement of thyroid hormone bioactivity in cells by
the upregulation of thyroid hormone receptors (TRs) and thyroid
hormone converting enzymes (monodeiodinases), and of immedi-
ate early thyroid hormone target genes (Fig. 1; Denver, 2009; R.M.
Bonett, E.D. Hoopfer and R.J. Denver, unpublished data). For exam-
ple, corticosteroids increased maximal nuclear binding capacity for
3,5,30-triiodothyronine (T3; Niki et al., 1981; Suzuki and Kikuyama,
1983; Kikuyama et al., 1993). Combined treatment of X. laevis tail
explants or frog cell lines with corticosterone and T3 caused syner-
gistic upregulation of TRa and TRb mRNAs (R.M. Bonett, E.D. Hoop-
fer and R.J. Denver, unpublished data). Corticosterone also
increased 50-deiodinase activity in bullfrog tadpoles, thereby
increasing bioavailability of T3 at peripheral tissues (Galton,
1990; and see Darras et al., 2002; Kuhn et al., 2005).

In addition to TRs and monodeiodinases, some thyroid hormone
target genes are synergistically upregulated by thyroid hormone
plus corticosterone through mechanisms that may not be directly,
or immediately dependent on an increase in TRs or deiodinases.
That is, the target genes may be direct targets for TRs and for cor-
ticosteroid receptors (GR, MR) which then function in a synergistic
manner to activate gene transcription. For example, Krüppel-like
factor 9 (Klf9; also known as basic transcription element binding
protein 1; bteb1) is a T3 target gene that is also induced by cortico-
sterone acting via the GR (Bonett et al., 2009), and is superinduced
with rapid kinetics by combined treatment with T3 plus corticoste-
rone, both in vivo in X. laevis, and in frog tissue culture cells (R.M.
Bonett, E.D. Hoopfer and R.J. Denver, unpublished data). We found
similar synergistic upregulation of the Klf9 gene by T3 and cortico-
steroids in a mouse hippocampal cell line (HT-22; P. Bagamasbad
and R.J. Denver, unpublished data). We have identified regions of
the Klf9 gene in frog and mouse that support synergistic gene acti-
vation in transfection assays, and that exhibit hyperacetylation of
histones upon hormone treatment (P. Bagamasbad and R.J. Denver,
unpublished data). These findings suggest that synergistic gene
regulation by thyroid hormone and corticosteroids may be a gen-
eral, and important phenomenon in animal development.

The common regulation of the HPT and the HPA axes by CRF-
like peptides, and the sensitization of target tissues to low concen-
trations of thyroid hormone by corticosteroids may provide a
mechanism by which a tadpole can modulate its rate of develop-
ment in response to a changing environment. Similar to the role
that stress hormones play in timing amphibian metamorphosis,
in mammals, CRF and corticosteroids have been shown to play crit-
ical roles in the timing of birth. In humans, the increase in CRF of
fetal and placental origin, and adrenal steroids of fetal origin have
been implicated in controlling the timing of parturition (McLean
and Smith, 2001; Hillhouse and Grammatopoulos, 2002). The
HPA axis of mammals matures during mid- to late-gestation, and
as birth approaches concentrations of CRF and corticosteroids in
the maternal circulation increase exponentially, and this is driven
by a positive feedback loop between the placenta and the fetus
(McLean and Smith, 2001; Hillhouse and Grammatopoulos,
2002). Studies in sheep have shown that CRF derived from the fetal
paraventricular nucleus (PVN; located in the hypothalamus where
it houses CRF neurosecretory neurons; homologous to the frog
anterior preoptic area—POA) plays a critical role in timing gesta-
tion (Brooks and Challis, 1988; Matthews and Challis, 1996; Challis
et al., 2000, 2005). Unlike the ovine placenta, the human placenta
synthesizes CRF (Torricelli et al., 2007) which, together with fetal
CRF is implicated in timing parturition (i.e., the ‘CRF placental
clock’; McLean et al., 1995). Early elevations in maternal circulating
CRF driven by placental CRF secretion is associated with higher
probabilities of pre-term birth in humans (McLean et al., 1995).
In addition to CRF, the CRF-BP is expressed in the human placenta
and is secreted into the maternal circulation (Linton et al., 1993;
Behan et al., 1996). The expression of CRF-BP declines during
late-gestation, at which time placental CRF expression increases.
Together, this leads to an increase in free CRF in the circulation,
which is hypothesized to play an important role in the timing of
birth (McLean and Smith, 2001; Hillhouse and Grammatopoulos,
2002).

4. Effects of early life experience on later life phenotypic
expression

In addition to modifying the timing and size at life history
transitions such as metamorphosis or birth, the environment
experienced by developing organisms can have profound effects
on phenotypic expression later in life, and thus affect individual
fitness (often referred to as phenotypic ‘carry-over’, or develop-
mental ‘programming’). Exposure to stressors during early devel-
opment can result in higher probabilities of reproductive
dysfunction and adult-onset diseases in humans. Studies in frogs
and mammals point to elevated GCs, caused by exposure to stress-
ors during early development, as the proximate mechanism for ef-
fects on the function of physiological and behavioral systems later
in life. The molecular mechanism of GC action during early devel-
opment may involve the promotion of epigenetic changes such as
DNA methylation and chromatin modifications, which leads to the
reprogramming of neuroendocrine stress axis genes.

In mammals, maternal malnutrition or repeated acute stress
cause intrauterine growth retardation and pre-term birth (Wein-
stock et al., 1992, 1998; Challis et al., 2001; Bloomfield et al.,
2003), and are associated with reproductive dysfunction and in-
creased susceptibility to disease later in life (Barker, 1997; Wein-
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stock, 2001; Matthews, 2002; Sloboda et al., 2006). These later-life
effects of the in utero environment are associated with elevated
neuroendocrine stress axis activity in mothers and fetuses (Wein-
stock, 2001; Welberg and Seckl, 2001; Matthews, 2002). Elevations
in plasma GCs at critical windows of brain development may per-
manently alter the functioning of the stress axis and the expression
of behaviors throughout life. Similarly, in amphibian tadpoles,
exposure to environmental stressors (high conspecific density, de-
creased food availability, habitat desiccation, predators), or to a
physical stressor all elevate corticosterone (Denver, 1997; Hayes,
1997; Glennemeier and Denver, 2002b; Denver et al., 2002). Acti-
vation of the tadpole HPA axis is linked to decreased growth and
thus smaller size at metamorphosis (Hayes, 1997; Denver et al.,
2002; Glennemeier and Denver, 2002b,c). Previously, it was
thought that the complex life cycle (larval stage followed by a
metamorphosis to the juvenile/adult form) was a means to disso-
ciate phenotypic correlations between stages, thus allowing each
life history stage to evolve independently (Ebenman, 1992; Moran,
1994; Pechenik et al., 1998). However, a growing body of evidence
now shows that phenotypic carry-over occurs between different
stages of the amphibian life cycle and may have wide-ranging ef-
fects on individual fitness (Goater, 1994; Scott, 1994; Van Buskirk
and Saxer, 2001; Alvarez and Nicieza, 2002; Altwegg and Reyer,
2003).

Exposure to stress early in life is typically associated with a ‘‘hy-
per-responsive” neuroendocrine stress axis, with elevated basal
expression of hypothalamic CRF and plasma GCs (McCormick
et al., 1995; Weinstock, 2001; Meaney, 2001), fearful behaviors
and anxiety (Smythe et al., 1996; Meaney, 2001), magnified or pro-
longed responses of CRF and GCs to acute stressors (Meaney, 2001;
Lesage et al., 2004), and increased food intake associated with
higher probabilities of obesity and metabolic dysfunction (Barker,
1997; Breier et al., 2001). These responses are complex, as they of-
ten depend on gender, the duration of exposure to stress, and the
developmental stage when the stress was experienced (Meaney,
2001; Matthews, 2002). The hyper-reactivity of the HPA axis may
result from reduced GC negative feedback, as shown by the simul-
taneous elevation in basal plasma GCs and CRF expression in the
PVN, prolonged elevations in plasma GCs after a stress response,
and reduced GR expression in the hippocampus (Meaney, 2001;
Welberg and Seckl, 2001; Weaver et al., 2004).

Recent work from my laboratory showed that food restriction
during the tadpole stage altered post-metamorphic growth and
HPA axis activity in X. laevis (Hu et al., 2008). We manipulated food
availability of tadpoles from Nieuwkoop Faber stage 56–57 (Nie-
uwkoop and Faber, 1994) to the completion of metamorphosis.
Food restriction increases whole body corticosterone content in
tadpoles (Glennemeier and Denver, 2002b; Crespi and Denver,
2005). Tadpoles that were food restricted had reduced body weight
at metamorphosis, but juvenile frogs showed catch-up growth, and
reached similar body size to controls by 21 days after metamor-
phosis. Food restricted animals had greater food intake, size-spe-
cific growth rates, and whole body corticosterone content (Hu
et al., 2008). Our findings in the frog compare with those from
mammals that show that exposure to GCs during the fetal/perina-
tal period leads to elevated basal plasma GC concentrations during
later life stages (Meaney et al., 2007). The elevated corticosterone
may be causally related to the increased food intake seen in juve-
nile frogs, since corticosterone facilitates feeding in juvenile X. lae-
vis (Crespi and Denver, 2004).

We also tested for a causal relationship between elevated corti-
costerone and later life phenotypic expression by exposing early
prometamorphic tadpoles to 100 nM corticosterone in their aquar-
ium water for 5 or 10 days, and then allowing them to develop and
grow until 2 months after metamorphosis (Hu et al., 2008). This
treatment increased whole body corticosterone content by �3-
fold, which is within the physiological range achieved in tadpoles
exposed to shaking/confinement stressor (Glennemeier and Den-
ver, 2002a). Also, the level reached, and duration of corticosterone
elevation is comparable to that seen with pond drying (Denver,
1997, 1998) or intraspecific competition (Denver et al., 1998; Glen-
nemeier and Denver, 2002b; Boorse and Denver, 2004). Corticoste-
rone treatment as tadpoles reduced body weight at metamorphosis
(growth inhibition discussed above), but juvenile frogs showed
catch-up growth, reaching similar body size as controls 2 months
after metamorphosis (Hu et al., 2008). Juvenile frogs that had been
treated with corticosterone as tadpoles had increased HPA activity
as evidenced by higher basal plasma corticosterone concentration.
Also, treatment with corticosterone as a tadpole decreased the
number of GR immunoreactive (GR-ir) cells throughout the brain
(POA, amygdala, bed nucleus of the stria terminalis [BNST], medial
pallium [homolog of the mammalian hippocampus]; Fig. 2—only
the POA shown) and in the anterior pituitary gland of juvenile frogs
(Hu et al., 2008). Corticosterone treatment as a tadpole also lead to
the sensitization of CRF neurons in the POA/hypothalamus to a
physical stressor (shaking/confinement stressor; Yao et al., 2004)
as shown by measures of CRF mRNA on microdissected brain sec-
tions (F. Hu and R.J. Denver, unpublished data). Our findings show
that elevations in corticosterone during the tadpole stage alters
neuroendocrine gene expression, leading to altered feedback rela-
tionships and activity of the HPA axis, which could have long term
fitness consequences.

In rodents, neonatal stress alters CRF neuronal morphology in
the PVN and other areas of the brain involved in the stress re-
sponse; e.g., the amygdala, BNST, hippocampus, and locus coeru-
leus (Meaney, 2001). The amygdala and BNST play central roles
in the expression of fear and anxiety-related behaviors (Charney
et al., 1998; Herman et al., 2005; Schafe et al., 2005; Schulkin
et al., 2005; Morgane et al., 2005). These limbic structures have
extensive connections with the telencephalon, hypothalamus, thal-
amus and brainstem, and are known to influence neuroendocrine
and autonomic functions (Gray, 1991; Ongur and Price, 2000; Her-
man et al., 2005; Morgane et al., 2005). It is well established in ro-
dents that CRF neurons in the amygdala and BNST are activated in
response to fear/anxiety-provoking stressors (Casada and Dafny,
1991; Gray, 1993; Merali et al., 1998; Makino et al., 1999; Bruijn-
zeel et al., 2001; Becker et al., 2007; Rotllant et al., 2007). The BNST
composes the main relay between the amygdala and the hypothal-
amus, and is the major direct non-hypothalamic input to the par-
vocellular PVN (Sawchenko and Swanson, 1983; Cunningham
et al., 1990). The CRF-expressing pathways in the amygdala and
BNST may be involved in relaying stress input to the hypothalamus
and facilitating CRF release from the PVN (Gray, 1993).

Our recent work in the frog X. laevis suggests that the basic
functions of limbic structures in the stress response, and the nature
of the feedback regulation by GCs likely arose before the diver-
gence of the amphibian and amniote lineages, and may be common
features in tetrapods (Yao et al., 2004, 2008a,b; Yao and Denver,
2007). Alterations in CRF neuronal physiology in frogs by exposure
to stressors early in life could lead to behavioral modifications with
long term fitness consequences. For example, individuals that are
less active in response to larval predators (i.e., more fearful) may
also show reduced activity in the post-metamorphic environment,
and thus be less effective at obtaining food or mates.

4.1. Effect of early life stress on later life food intake

Hormones of the neuroendocrine stress axis (CRF, corticoste-
rone) influence food intake, with CRF potently anorexigenic, while
corticosterone is orexigenic (Heinrichs and Richard, 1999; Carr,
2002; Crespi et al., 2004; Crespi and Denver, 2004, 2005). The tem-
poral relationship between these opposing actions modulates



Fig. 2. Treatment of X. laevis tadpoles with corticosterone leads to decreased glucocorticoid receptor (GR) immunoreactivity (-ir) in the anterior preoptic area (POA) of 2-
month-old juvenile frogs. Early prometamorphic tadpoles (Nieuwkoop Faber stage 52–54) were treated with 100 nM corticosterone added to the aquarium water for 5 days
then reared to 2 months post-metamorphosis. (Left) Photomicrographs of representative transverse sections through the POA of juvenile frogs. (Right) Quantitative
morphometric analysis showing the mean GR-ir signal density in the POA of juvenile frogs. The asterisk indicates a significant difference based on t-test (P < 0.05; n = 5/
treatment; scale bar = 100 lm). Modified from Hu et al. (2008) with permission.
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appetite and feeding during the stress response; e.g., CRF acting
rapidly to suppress appetite, corticosterone acting later to stimu-
late appetite and replenish energy reserves (Heinrichs and Richard,
1999; Crespi and Denver, 2004). Diurnal changes in plasma corti-
costerone influence appetite through actions on the hypothalamus
(Dallman et al., 1993, 1995).

A striking effect of exposure to stressors during early mamma-
lian development is the programming of the appetite and meta-
bolic phenotype (Sloboda et al., 2006). Maternal nutritional stress
during pregnancy is often associated with hyperphagia and
‘‘catch-up growth” in offspring (Breier et al., 2001). Neonates from
undernourished mothers have higher basal PVN CRF content and
plasma corticosterone concentration (Breier et al., 2001), which
may be causally related to the increased food intake. Programming
of the metabolic phenotype is reflected in changed gene expression
in different organs through epigenetic modifications at gene pro-
moters, including the GR and peroxisome proliferator activated
receptors (PPARs; Burdge et al., 2007). These changes are thought
to be due, at least in part, to increased exposure to GCs early in life
(Burdge et al., 2007). As discussed above, food restriction, or expo-
sure to corticosterone during the tadpole stage leads to increased
food intake and compensatory growth in juvenile frogs when food
is abundant (Hu et al., 2008; Morey and Reznick, 2001). This is
associated with elevated plasma corticosterone concentration,
which may be causally related to the hyperphagia (Hu et al.,
2008). Compensatory growth may be a general phenomenon in tet-
rapod vertebrates, and thus could have similar mechanistic
underpinnings.

Compensatory growth could quickly reverse any competitive
disadvantage that smaller individuals have at metamorphosis (or
birth). However, there is evidence that such compensation comes
at a variety of costs later in life, and although an organism might
appear to recover through catch-up growth, early life nutritional
deficits result in profound and permanent changes in adult physi-
ology and behavior (Metcalfe and Monaghan, 2001). This is true for
many organisms (Metcalfe and Monaghan, 2001), and perhaps best
illustrated in humans, where despite compensation in body size
through catch-up growth, prenatally stressed individuals have
higher probabilities of hypertension, obesity, and type II diabetes,
among other diseases during later life (Barker, 1997; Breier et al.,
2001).

4.2. Epigenetic programming of gene expression by early life
experience

There is a growing body of evidence that epigenetic mecha-
nisms of gene regulation, such as DNA methylation and chromatin
modifications, play important roles in mediating the relationship
between the early environment and later life phenotypic expres-
sion (Jaenisch and Bird, 2003; Junien et al., 2005; Vickaryous and
Whitelaw, 2005; Meaney et al., 2007; Waterland and Michels,
2007; Mathers, 2007). Early development is an active period of
DNA methylation mediated by DNA methyltransferases (DNMTs)
and leading to gene repression/silencing. Methylation of DNA oc-
curs in genomic regions known as CpG islands, and nuclear pro-
teins that bind to methyl-CpG mediate gene repression. Two
families of DNA binding proteins that recognize and bind to
methyl-CpG dinucleotides have been identified. There are five
methylated CpG-binding domain (MBD) protein genes in mammals
(MeCP2, MBD1–4; Clouaire and Stancheva, 2008). Chromatin
immunoprecipitation (ChIP) experiments have localized MBD pro-
teins to methylated and silenced genes (Gregory et al., 2001; Balle-
star et al., 2003; Lopez-Serra and Esteller, 2008). A second family of
methyl-CpG-binding proteins is the BTB/POX zinc finger domain
proteins of which the protein Kaiso is the founding member (also
ZBTB4 and ZBTB38; Lopez-Serra and Esteller, 2008; Clouaire and
Stancheva, 2008). We recently identified Kaiso as a GC target gene
in X. laevis brain (F. Hu and R.J. Denver, unpublished data).

Early life experience can influence the degree of DNA methyla-
tion at CpG islands in gene promoters (Szyf et al., 2005, 2007a,b).
Whether these changes are mediated by GCs has yet to be deter-
mined. The promoter region of the rat GR gene (exon 17) has a
CpG island that is differentially methylated depending on early life
experience, and the methylation state is thought to determine the
level of GR expression (Weaver et al., 2004). The frog (X. tropicalis)
GR gene has the same number of exons as the rodent genes and
conserved CpG islands located in the first two noncoding exons
(Y. Kyono and R. Denver, unpublished), suggesting that its expres-
sion may also be modified by DNA methylation and may account
for the decreased GR-ir that we observed in juvenile frogs follow-
ing exposure to corticosterone as a tadpole (Hu et al., 2008). Sev-
eral transcription factor binding sites have been identified in this
region of the rat GR gene, and the methylation state of DNA may
be influenced by, or may influence the binding of transcriptional
activators such as nerve growth factor I-A (NGFI-A; Weaver et al.,
2007). NGFI-A may serve to reverse epigenetic marks at the GR
promoter, and may thus mediate maternal effects (Weaver et al.,
2007). Recent findings show that the CRF gene also has CpG islands
and is thus a target for epigenetic regulation by DNA methylation
(McGill et al., 2006; Murani et al., 2006). Mice harboring a trun-
cated allele of MeCP2 had increased CRF mRNA in the PVN, central
amygdala and BNST, increased anxiety-like behavior, and elevated
serum corticosterone concentration (McGill et al., 2006). These
authors also showed using ChIP assay that MeCP2 associates with
the CRF promoter.

Another important means for epigenetic modulation that may
be influenced by early life experience, and by GCs is the modifica-
tion of chromatin structure by histone acetylation, methylation,
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ubiquitination, phosphorylation and ADP-ribosylation (Lachner
and Jenuwein, 2002; Lachner et al., 2003; Cheung and Lau, 2005;
Caiafa and Zampieri, 2005). Methylation of DNA is accompanied
by post-translational modification of histones that modulate chro-
matin structure and transcriptional activity. The histones in chro-
matin of methylated, silenced genes are hypoacetylated and
methylated (H3 methylated on lysine 9), both of which are indica-
tive of a repressive chromatin structure (Gregory et al., 2001; Bal-
lestar et al., 2003; Clouaire and Stancheva, 2008). Acetylation of
histone tails (e.g., H3 and H4) is often, but not always, associated
with transcriptional activation. Methylation of H3 at lysine 9 is
associated with heterochromatin and gene silencing, while meth-
ylation of histone H3 at lysine 4 or 27 is associated with transcrip-
tional activation (Lachner and Jenuwein, 2002; Lachner et al.,
2003). Each lysine residue may become mono-, di-, or tri-methyl-
ated; the consequences of this diversity of histone modification
is poorly understood.

5. Summary

Hormones mediate many effects of the environment on
amphibian development, and consequently on phenotypic expres-
sion in the juvenile and adult. Hormones of the neuroendocrine
stress axis have especially important roles in mediating environ-
mental effects on developmental plasticity. Since the stress axis
plays key roles in behavior and growth, early environmental ef-
fects, mediated in part by GCs, on the development of the neuroen-
docrine system can have profound fitness consequences. The
actions of GCs in programming long term changes in gene expres-
sion likely result from epigenetic changes such as DNA methylation
and histone modifications. Amphibians and other nonmammalian
species can serve as important model organisms for elucidating
the molecular mechanisms of stress hormone actions in early
development, and the consequences of these actions for later life
phenotypic expression.
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